Odpowiedź :
[tex]y=3x^2-4x+5\\\Delta=(-4)^2-4\cdot3\cdot5=16-60=-44\\p=\frac{-b}{2a} =\frac{4}{2\cdot3} =\frac{4}{6} =\frac{2}{3} \\q=\frac{-\Delta}{4a} =\frac{44}{4\cdot3} =\frac{44}{12} =3\frac{2}{3} \\y=a(x-p)^2+q\\\boxed{y=3(x-\frac{2}{3} )^2+3\frac{2}{3} }[/tex]
Odpowiedź:
[tex]Posta\'c\ \ kanoniczna\ \ y=a(x-p)^2+q\\\\y=3x^2-4x+5\\\\a=3\ \ ,\ \ b=-4\ \ ,\ \ c=5\\\\\Delta=b^2-4ac=(-4)^2-4\cdot3\cdot5=16-60=-44\\\\\\p=\frac{-b}{2a}=\frac{-(-4)}{2\cdot3}=\frac{4}{6}=\frac{2}{3}\\\\\\q=\frac{-\Delta}{4a}=\frac{-(-44)}{4\cdot3}=\frac{44}{12}=\frac{11}{3}\\\\\\y=a(x-p)^2+q\\\\y=3(x-\frac{2}{3})^2+\frac{11}{3}[/tex]