Odpowiedź i szczegółowe wyjaśnienie:
[tex]a)\ 12\cdot\sqrt[3]2\cdot2^\frac34=12\cdot2^\frac13\cdot2^\frac34=12\cdot2^{\frac13+\frac34}}=12\cdot2^{\frac{4}{12}+\frac{9}{12}}=12\cdot2^{\frac{13}{12}}=\\\\=12\cdot2\cdot2^\frac{1}{12}=24\cdot\sqrt[12]2\\\\b)\ 8\cdot \sqrt3\cdot3^\frac32=8\cdot3^\frac12\cdot3^\frac32=8\cdot3^{\frac12+\frac32}=8\cdot3^{\frac42}=8\cdot3^2=8\cdot9=72\\\\c)\ 6\cdot \sqrt[3]4\cdot2^\frac43=6\cdot4^\frac13\cdot2^\frac43=6\cdot2^\frac23\cdot2^\frac43=6\cdot2^{\frac23+\frac43}=6\cdot2^2=6\cdot 4=24\\\\[/tex]
[tex]d)\ 3\cdot \sqrt6\cdot2^\frac32=3\cdot\sqrt{3\cdot2}\cdot2^\frac32=3\sqrt3\cdot2^\frac12\cdot2^\frac32=3\sqrt3\cdot2^{\frac12+\frac32}=\\\\=3\sqrt3\cdot2^2=3\sqrt3\cdot4=12\sqrt3[/tex]