zadanie w załączniku, krótkie

Zadanie W Załączniku Krótkie class=

Odpowiedź :

Mamy:

[tex]\sqrt{36}=\sqrt{6^2}}=6\\\\\sqrt{24}=\sqrt{4\cdot6}=\sqrt{4}\cdot\sqrt{6}=2\sqrt{6}\\\\\sqrt{27}=\sqrt{9\cdot3}=\sqrt{9}\cdot\sqrt{3}=3\sqrt{3}\\\\\sqrt{12}=\sqrt{4\cdot3}=\sqrt{4}\cdot\sqrt{3}=2\sqrt{3}[/tex]

Liczymy obwód:

[tex]\text{Ob}=\sqrt{36}+4\sqrt{3}+\sqrt{27}+5\sqrt{3}+\sqrt{12}=\\\\=6+4\sqrt{3}+3\sqrt{3}+5\sqrt{3}+2\sqrt{3}=\boxed{14\sqrt{3}+6}[/tex]

Pole:

[tex]P=\dfrac{a+b}{2}\cdot h=\dfrac{\sqrt{12}+5\sqrt{3}+4\sqrt{3}}{2}\cdot\sqrt{24}=\\\\=\dfrac{2\sqrt{3}+5\sqrt{3}+4\sqrt{3}}{2}\cdot2\sqrt{6}=\dfrac{11\sqrt{3}\cdot2\sqrt{6}}{2}=\\\\\\=11\sqrt{3}\cdot\sqrt{6}=11\sqrt{3\cdot6}=11\sqrt{18}=11\sqrt{9\cdot2}=\\\\=11\cdot\sqrt{9}\cdot\sqrt{2}=11\cdot3\cdot\sqrt{2}=\boxed{33\sqrt{2}}[/tex]