1. Rozwiązaniem nierówności [tex]x^{2} \leq 1[/tex] jest każda liczba należąca do przedziału: [tex]A. (-\infty};1\ \textgreater \ , \\B. \ \textless \ 1;+\infty}),\\C. \ \textless \ -1;1\ \textgreater \ ,\\D. (-1;1).[/tex]

2. Funkcja f określona jest wzorem f (x) = -2(x + 3)² - 5.
Oceń prawdziwość podanych zdań.
Rozwiązaniem nierówności f (x) < 0 jest każda liczba rzeczywista x. P F
Rozwiązaniem nierówności f (x) ≥ - 5 jest tylko liczba - 3.

Bardzo proszę o wytłumaczenie, proszę nie piszcie samych odpowiedzi,nie rozumiem tego. Z góry bardzo dziękuję


Odpowiedź :

1.

[tex]x^{2} \leq 1\\\\x^{2}-1 \leq 0\\\\M. \ zerowe:\\\\x^{2} -1 = 0\\\\(x+1)(x-1) = 0\\\\x+1 = 0 \ \vee \ x-1 = 0\\\\x = -1\vee \ x = 1\\\\a =1> 0[/tex]

Ramiona paraboli skierowane są do góry, wartości ≤ 0 znadują się pod osią OX wraz z -1 i 1

[tex]x \in \langle-1; 1\rangle\\\\Odp. \ C.[/tex]

2.

[tex]f(x) = -2(x+3)^{2} - 5[/tex]

a)

[tex]f(x) < 0\\\\-2(x+3)^{2} - 5 < 0\\\\-2(x^{2}+6x+9)-5 < 0\\\\-2x^{2}-12x-18-5 < 0\\\\-2x^{2}-12x - 23 < 0\\\\a = -2, \ b = -12, \ c = -23\\\\\Delta = b^{2}-4ac = (-12)^{2} -4\cdot(-2)\cdot(-23) = 144-184 = -40 < 0[/tex]

Δ < 0, to parabola nie przecina osi OX

a = -2 < 0, to ramiona paraboli skierowane są do dołu

Zatem:

x ∈ R      P  

b)

[tex]f(x) \geq -5\\\\-2(x+3)^{2} -5 \geq 5\\\\-2(x+3)^{2} \geq 0 \ \ /:(-2)\\\\(x+3)^{2} \leq 0\\\\x+3 \leq 0\\\\x = -3 \ \ \ \ P[/tex]