Odpowiedź :
[tex]f(x) = \frac{-5x^{2}}{2+x}\\\\\\a) \ \ f(-x) = \frac{-5\cdot(-x)^{2}}{2+(-x)} =-\frac{5x^{2}}{2-x}\\\\b) \ \ f(x+4)-5 = \frac{-5(x+4)^{2}}{2+(x+4)}-5 = -\frac{5(x+4)^{2}}{6+x} - 5[/tex]
[tex]f(x) = \frac{-5x^{2}}{2+x}\\\\\\a) \ \ f(-x) = \frac{-5\cdot(-x)^{2}}{2+(-x)} =-\frac{5x^{2}}{2-x}\\\\b) \ \ f(x+4)-5 = \frac{-5(x+4)^{2}}{2+(x+4)}-5 = -\frac{5(x+4)^{2}}{6+x} - 5[/tex]