Odpowiedź :
Obliczam długość odcinka AB
[tex]\text{A}=(-3,3)\Rightarrow x_{\text{A}}=-3; \ y_{\text{A}}=3\\\\\text{B}=(1,-5)\Rightarrow x_{\text{B}}=1; \ y_{\text{B}}=-5\\\\|AB|=\sqrt{(x_{\text{B}}-x_{\text{A}})^2+(y_{\text{B}}-y_{\text{A}})^2}\\\\|AB|=\sqrt{(1-(-3))^2+(-5-3)^2}\\\\|AB|=\sqrt{(1+3)^2+(-8)^2}\\\\|AB|=\sqrt{4^2+64}\\\\|AB|=\sqrt{16+64}\\\\|AB|=\sqrt{80}\\\\|AB|=\sqrt{16\cdot5}\\\\\huge\boxed{|AB|=4\sqrt5}[/tex]
Obliczam środek odcinka AB
[tex]A=(-3,3) \ \text{oraz} \ B=(1,-5)\\\\S_{AB}=(\frac{x_A+x_B}{2}; \ \frac{y_A+y_B}{2})\\\\S_{AB}=(\frac{-3+1}{2}; \ \frac{3+(-5)}{2})\\\\\huge\boxed{S_{AB}=(-1;-1)}[/tex]