Odpowiedź:
[tex]Sze\'scian\ \ liczby\ \ 3\sqrt{2}\ \ jest\ \ r\'owny\ \ 54\sqrt{2}\\\\(3\sqrt{2})^3=3^3\cdot(\sqrt{2})^3=27\cdot\sqrt{8}=27\cdot\sqrt{4\cdot2}=27\cdot2\sqrt{2}=54\sqrt{2}\ \ \ \ \ \ P\\\\\\Pierwiastek\ \ kwadratowy\ \ z\ \ liczby\ \ 128\ \ mo\.zna\ \ zapisa\'c\ \ w\ \ postaci\ \ 2\sqrt{8}\\\\\sqrt{128}=\sqrt{64\cdot2}=\sqrt{64}\cdot\sqrt{2}=8\sqrt{2}\ \ \ \ F\\\\\\2\sqrt{8}\ \ mo\.zna\ \ zapisa\'c\ \ w\ \ postaci\ \\\\2\sqrt{8}=2\sqrt{4\cdot2}=2\cdot2\sqrt{2}=4\sqrt{2}[/tex]