Zapisz w najprostszej postaci i oblicz:
a) (1,1)⁵ : (1,1)³
b) (⅗)⁴ × 5⁴
c) (⅗)⁴ × (1⅔)⁵
d)
[tex] \frac{ {25}^{2} \times {5}^{3} }{ {5}^{6} } [/tex]


Odpowiedź :

[tex]zad.a\\\\(1,1)^{5} \div (1,1)^{3}=\dfrac{(1,1)^{5}}{(1,1)^{3}} =(1,1)^{5-3}=(1,1)^{2}=1,21\\\\zad.b\\\\(\dfrac{3}{5} )^{4} \cdot (1\dfrac{2}{3} )^{5} =(\dfrac{3}{5} )^{4} \cdot (\dfrac{5}{3} )^{5} =(\dfrac{3}{5} )^{4} \cdot (\dfrac{3}{5} )^{-5} =(\dfrac{3}{5} )^{4-5}=(\dfrac{3}{5} )^{-1}=(\dfrac{5}{3} )^{1}=\dfrac{5}{3}=1\dfrac{2}{3}[/tex]

[tex]zad.c\\\\(\dfrac{3}{5} )^{4} \cdot 5^{4} =(\dfrac{3}{5}\cdot 5 )^{4}=3^{4} =81\\\\zad.d\\\\\dfrac{25^{2} \cdot 5^{3} }{5^{6} } =\dfrac{(5^{2} )^{2} \cdot 5^{3} }{5^{6} } =\dfrac{5^{4} \cdot 5^{3} }{5^{6} } =\dfrac{5^{4+3} }{5^{6} } =\dfrac{5^{7} }{5^{6} } =[/tex]

[tex]= 5^{7-6} =5^{1} =5[/tex]

Korzystałam z następujących wzorów :

[tex]x^{n} \cdot x^{m} =x^{n+m} \\\\x^{n} \div x^{m} =x^{n-m}\\\\(x^{n} )^{m} =x^{n\cdot m} \\\\[/tex]