Odpowiedź :
[tex]a)\\\\x=0,\ \ x=\frac{1}{2}\ \ \ x=-2,\ \ x=-3\\\\ W(x)=3x^3+x^2-2x-3\\\\W(0)=3x^3+x^2-2x-3=3*0^3+0^2-2*0-3=-3\\\\W( \frac{1}{2})=3x^3+x^2-2x-3=3* (\frac{1}{2})^3+ (\frac{1}{2})^2-\not{2}^1* (\frac{1}{\not{2}^1}) -3= 3*\frac{1}{8}+\frac{1}{4}-1-3=\\\\= \frac{3}{8}+\frac{2}{8}-4=\frac{5}{8}-4=\frac{5}{8}-3\frac{8}{8}=-3\frac{3}{8}\\\\W( -2)=3x^3+x^2-2x-3=3* (-2)^3+ (-2)^2-2* (-2) -3=3*(-8)+4+4-3= -24+8-3=-19\\\\ W( -3)=3x^3+x^2-2x-3=3* (-3)^3+ (-3)^2-2* (-3) -3=\\\\=3*(-27) +9+6-3=-81+15-3=-69[/tex]
[tex]b)\\\\x=0,\ \ x=\frac{1}{2}\ \ \ x=-2,\ \ x=-3 \\\\W(x)=-2x^3+x^2-5x+2\\\\W(0)=-2x^3+x^2-5x+2=-2*0^3+0^2-5*0+2=2 \\\\W( \frac{1}{2})=-2x^3+x^2-5x+2=-2*(\frac{1}{2})^3+ (\frac{1}{2})^2-5 *\frac{1}{2} +2=\\\\=-\not{2}^1*\frac{1}{\not{8}^4} +\frac{1}{4}-\frac{5}{2}+2=-\frac{1}{4}+\frac{1}{4}-2\frac{1}{2}+2=-\frac{1}{2}\\\\W(-2)=-2x^3+x^2-5x+2=-2*(-2)^3+ (-2)^2-5*(-2) +2=-2*(-8)+4+10+2= 16+16=32[/tex] [tex]W(-3)=-2x^3+x^2-5x+2=-2*(-3)^3+ (-3)^2-5*(-3) +2=\\\\=-2*(-27)+9+15+2= 54+26=80[/tex]