Kulka wahadła matematycznego wykonuje drgania. Maksymalna wysokość, na jaką wznosi się ta kula względem poziomu równowagi, wynosi 0,5dm. Ile wynosi prędkość kuli wahadła w chwili, gdy przechodzi przez położenie równowagi?
Pomiń wszelkie opory ruchu.


Odpowiedź :

[tex]dane:\\h = 0,5 \ dm = 0,05 \ m\\g = 10\frac{m}{s^{2}}\\szukane:\\v = ?[/tex]

Rozwiązanie

Kulka wahadła na wysokości 0,5 dm ma max. energię potencjalną, a w położeniu równowagi ta energia wynosi 0. Cała energia potencjalna zostaje przekształcona w energię kinetyczną.

Z zasady zachowania energii:

[tex]E_{p} = E_{k}\\\\mgh = \frac{mv^{2}}{2} \ \ /\cdot\frac{2}{m}\\\\v^{2} = 2gh\\\\v = \sqrt{2gh}\\\\v = \sqrt{2\cdot10\frac{m}{s^{2}}\cdot0,05m}\\\\v = \sqrt{1\frac{m^{2}}{s^{2}}}\\\\\underline{v = 1\frac{m}{s}}[/tex]

Odp. Prędkość kulki wahadła w chwili, gdy przechodzi przez położenie równowagi ma wartość v = 1 m/s.