Odpowiedź :
Odpowiedź:
zad 14
a) √2 * √(4 1/2) = √2 * √(9/2) = √(2 * 9/2) = √9 = 3
b) √(2 2/3) : √(2/3) = √(8/3) : √(2/3) = √(8/3 : 2/3) = √(8/3 * 3/2) = √4 = 2
c) √6,4 : √10 = √(6,4 : 10) = √0,64 = 0,8
d) ∛10 * ∛0,1 = ∛(10 * 0,1) = ∛1 = 1
e) ∛(2 2/3) * ∛(1/9) = ∛(8/3) * ∛(1/9) = ∛(8/3 * 1/9) = ∛(8/27) = 2/3
f) ∛2,7/∛100 = ∛(2,7/100) =∛0,027) = 0,3
g) ∛(- 9) * ∛3 = ∛(- 9 * 3) = ∛(- 27) = - 3
h) ∛128/∛(- 2) = ∛(- 128/2) = ∛(- 64) = - 4
i) (∛(- 0,5) * ∛4)/∛16 = ∛(- 0,5 * 4)/∛16 = ∛(- 2)/∛16 = ∛(- 2/16) =
= ∛(- 1/8) = - 1/2
14.
[tex]a) \ \sqrt{2}\cdot\sqrt{4\frac{1}{2}} = \sqrt{2}\cdot\sqrt{\frac{9}{2}} = \sqrt{2\cdot\frac{9}{2}}} = \sqrt{9} = \sqrt{2^{2}} = 3\\\\\\b) \ \sqrt{2\frac{2}{3}}:\sqrt\frac{2}{3}} =\sqrt{\frac{8}{3}}:\sqrt{\frac{2}{3}}=\sqrt{\frac{8}{3}\cdot\frac{3}{2}}=\sqrt{4} = 2\\\\\\c) \ \sqrt{6,4}:\sqrt{10} = \sqrt{6,4:10} = \sqrt{0,64} = 0,8[/tex]
[tex]d) \ \sqrt[3]{10}\cdot\sqrt[3]{0,1} = \sqrt[3]{10\cdot0,1} = \sqrt[3]{1} = 1\\\\\\e) \ \sqrt[3]{2\frac{2}{3}}\cdot\sqrt[3]{\frac{1}{9}} = \sqrt[3]{\frac{8}{3}}\cdot\sqrt[3]{\frac{1}{9}}=\sqrt[3]{\frac{8}{3}\cdot\frac{1}{9}} = \sqrt[3]{\frac{8}{27}}=\sqrt[3]{(\frac{2}{3})^{3}}} = \frac{2}{3}\\\\\\f) \frac{\sqrt[3]{2,7}}{\sqrt[3]{100}} = \sqrt[3]{\frac{2,7}{100}} = \sqrt[3]{0,027} = \sqrt[3]{0,3^{3}} = 0,3[/tex]
[tex]h) \ \frac{\sqrt[3]{128}}{\sqrt[3]{-2}} = \sqrt[3]{\frac{128}{-2}} = \sqrt[3]{-64} = \sqrt{(-4)^{3}} = -4\\\\\\i) \ \frac{\sqrt[3]{-0,5}\cdot\sqrt[3]{4}}{\sqrt[3]{16}} = \sqrt[3]{\frac{-0,5\cdot4}{16}}}=\sqrt[3]{-\frac{2}{16}} = \sqrt[3]{-\frac{1}{8}} = \sqrt[3]{(-\frac{1}{2})^{3}}} = -\frac{1}{2}[/tex]
Wyjaśnienie:
[tex]\sqrt[n]{a} \cdot\sqrt[n]{b} = \sqrt[n]{a\cdot b}\\\\\sqrt[n]{a}:\sqrt[n]{b} = \sqrt[n]{a:b}[/tex]