1. Porównaj wyrażenia. Użyj odpowiedniego znaku <, > lub =.
a) -4 * (1/2)² i -|-0,3|⁰
b) (5/2)³ * 0⁹ i (-3/2)¹
2. Oblicz wartość wyrażenia.
a) 3/4 * (2/3)² - 1/2 * (-4)³
b) 5 * (-0,5)² * (-1)³ + 4 * |₋1/2 - (-1)|
Daje naj


Odpowiedź :

[tex]zad.1 \\a)\\\\-4\cdot (\frac{1}{2} )^{2} =-4\cdot \frac{1}{4} = -1\\\\-|0,3|^{0} =-(0,3)^{0} =0\\\\-4\cdot (\frac{1}{2} )^{2}~~<~~-|0,3|^{0}\\\\b)\\\\(\frac{5}{2} )^{3} \cdot 0^{9} =\frac{125}{8} \cdot 0=0\\\\(-\frac{3}{2} )^{1} =-\frac{3}{2} =-1,5\\\\(\frac{5}{2} )^{3} \cdot 0^{9} ~~>~~(-\frac{3}{2} )^{1}[/tex]

[tex]zad.2\\\\a)\\\frac{3}{4} \cdot (\frac{2}{3} )^{2} -\frac{1}{2} \cdot (-4)^{3} =\frac{3}{4} \cdot\frac{4}{9} -\frac{1}{2} \cdot (-64)=\frac{1}{3} +32=32\frac{1}{3} \\\\b)\\\\5\cdot (-\frac{1}{2} )^{2} \cdot (-1)^{3} +4\cdot|-\frac{1}{2} -(-1)|=5\cdot \frac{1}{4} \cdot (-1) +4\cdot|-\frac{1}{2} +1|=-\frac{5}{4} +4\cdot |\frac{1}{2} |=-1\frac{1}{4} +4\cdot \frac{1}{2} =-1\frac{1}{4} +2=-1\frac{1}{4} +1\frac{4}{4} =\frac{3}{4}[/tex]