Rozwiązanie:
[tex]\frac{(3-\sqrt{2})^{2}x }{1}= \frac{1}{(3+\sqrt{2})^{2}x } \iff (3-\sqrt{2})^{2}x \cdot (3+\sqrt{2})^{2} x=1 \wedge x\neq 0\\x^{2} \cdot ((3-\sqrt{2})(3+\sqrt{2}) )^{2}=1\\x^{2} \cdot (9-2)^{2}=1\\49x^{2}=1\\49x^{2}-1=0\\(7x+1)(7x-1)=0\\x=-\frac{1}{7} \vee x=\frac{1}{7}[/tex]