a)
[tex]x-4\neq 0\\\\x\neq 4\\\\D:x\in R\setminus\{4\}\\\\[/tex]
[tex]\frac{2x+7}{x-4}>3\\\\\frac{2x+7}{x-4}-3>0\\\\\frac{2x+7-3(x-4)}{x-4}>0\\\\\frac{2x+7-3x+12}{x-4}>0\\\\\frac{-x+19}{x-4}>0 |*(-1)\\\\\frac{x-19}{x-4}<0\\\\(x-19)(x-4)<0\\\\\\Odp.\ x\in(4;190\\[/tex]
b)
[tex]4-x\neq0\\\\x\neq4\\\\D:x\in R\setminus\{4\}\\[/tex]
[tex]\frac{2}{4-x}-3<0\\\\\frac{2-3(4-x)}{4-x}<0\\\\\frac{2-12+3x}{4-x}<0\\\\\frac{3x-10}{4-x}<0\\\\(3x-10)(4-x)<0\\\\\\Odp. x\in(-\infty;3\frac{1}{3})\cup(4;+\infty)\\[/tex]