wskaż równanie prostej która przecina oś OY w punkcie (0,- √2)
A y=-√2x - √2
B y=-√2x
C y=√2x
D y= √2x +√2


Odpowiedź :

[tex]P(0, -\sqrt{2}) \ \ \rightarrow \ \ x = 0, \ y = -\sqrt{2}\\\\A.\\-\sqrt{2} = -\sqrt{2}\cdot 0 - \sqrt{2}\\\\-\sqrt{2} = -\sqrt{2} \ - \ TAK\\\\B.\\-\sqrt{2} = -\sqrt{2}\cdot 0\\\\-\sqrt{2}\neq 0 \ - \ NIE\\\\C.\\-\sqrt{2}=\sqrt{2}\cdot 0\\\\-\sqrt{2} \neq 0 \ - \ NIE\\\\D.\\-\sqrt{2} = \sqrt{2}\cdot0+\sqrt{2}\\\\-\sqrt{2} \neq \sqrt{2} \ - \ NIE\\\\Odp. \ A.[/tex]