Odpowiedź:
[tex]\huge\boxed{P_\triangle=15cm^2}[/tex]
Szczegółowe wyjaśnienie:
Mamy dane długości boków trójkąta, a do obliczenia mamy jego pole.
Musimy skorzystać ze wzoru Herona:
[tex]P_\triangle=\sqrt{d(d-a)(d-b)(d-c)},\ d=\dfrac{a+b+c}{2}[/tex]
[tex]a,\ b,\ c[/tex] - długości boków trójkąta.
=========================================================
Mamy:
[tex]a=8,5cm\\b=7,5cm\\c=4cm\\\\d=\dfrac{8,5+7,5+4}{2}=\dfrac{20}{2}=10(cm)[/tex]
Podstawiamy:
[tex]P_\triangle=\sqrt{10\cdot(10-8,5)\cdot(10-7,5)\cdot(10-4)}\\\\P_\triangle=\sqrt{10\cdot1,5\cdot2,5\cdot6}\\\\P_\triangle=\sqrt{225}\\\\P_\triangle=15(cm^2)[/tex]