Od a) do d) :
[tex]a] \ 3^4\cdot9^2=3^4\cdot(3^2)^2=3^4\cdot3^4=3^8\\\\b] \ 4^5\cdot8^3=(2^2)^5\cdot(2^3)^3=2^{10}\cdot2^9=2^{19}\\\\c] \ 8^3:2^5=(2^3)^3:2^5=2^9:2^5=2^4\\\\d] \ 125^7:25^{10}=(5^3)^7:(5^2)^{10}=5^{21}:5^{20}=5^1[/tex]
Od e) do h) :
[tex]e] \ (\frac{1}{9})^4:(\frac{1}{3})^3=((\frac{1}{3})^2)^4:(\frac{1}{3})^3=(\frac{1}{3})^8:(\frac{1}{3})^3=(\frac{1}{3})^5\\\\f] \ 0,5^9:(\frac{1}{4})^4=(2^{-1})^9:(2^{-2})^4=2^{-9}:2^{-8}=2^{-1}\\\\g] \ 0,1^9:0,001^2=0,1^9:(0,1^3)^2=0,1^9:0,1^6=0,1^3\\\\h] \ \frac{5^8}{32}\cdot\frac{2^{10}}{125}=\frac{5^8}{2^5}\cdot\frac{2^{10}}{5^3}=5^5\cdot2^5=(5\cdot2)^5=10^5[/tex]