Odpowiedź :
[tex](\frac{32}{54})^4*(\frac{9}{8})^5 = \frac{2^k}{3^s}\\(\frac{2^5}{2*3^3})^4*(\frac{3^2}{2^3})^5=(\frac{2^4}{3^3})^4*\frac{3^{10}}{2^{15}}=\frac{2^{16}}{3^{12}} * \frac{3^{10}}{2^{15}} = \frac{2^{16-15}}{3^{12-10}} = \frac{2^1}{3^2}\\k = 1\\s = 2[/tex]
[tex](\frac{32}{54} )^4\cdot(\frac{9}{8} )^5=(\frac{16}{27} )^4\cdot(\frac{3^2}{2^3} )^5=(\frac{2^4}{3^3} )^4\cdot(\frac{3^2}{2^3} )^5=\frac{3^2}{2^3} \cdot\frac{2^4}{3^4} =\frac{2^1}{3^2}[/tex]
k=1, s=2