[tex]\frac{x+3}{x-3} = \frac{6}{x-3}[/tex]
Z: mianownik musi być różny od zera
[tex]x - 3 \neq 0\\x\neq 3\\D = R \backslash\{3\}[/tex]
[tex](x+3)(x-3) = 6(x-3)\\\\x^{2}-9 = 6x-18\\\\x^{2}-6x-9+18 = 0\\\\x^{2}-6x+9 = 0\\\\(x-3)^{2} = 0\\\\x-3 = 0\\\\x = 3 \ \ \not\in D, \ brak \ rozwiazania[/tex]