Z1=4+j4
Z2=3-j2
Z3=2-j1
Z4=3+j5
Z1 + Z2 - Z3 = (4+j4) + (3-j2) - (2-j1) = (4+3-2) +j(4-2+1) = 5+3j
(Z1*Z2) / Z3 + Z4 = ((4+j4) * (3-j2)) / (2-j1) + (3+j5) =
= ((4*3-4*j2+3*j4-j2*j4) * (2+j1))/((2+j)*(2-j)) + (3+j5)=
=((12-8j+12j+8)*(2+j))/(4+1) + (3 + j5)=
=(20+4j)*(2+j)/5 + (3 + j5) =(40+20j+8j-4)/5 + (3 + j5) =
=(36+28j)/5 + (3 + j5) =(51/5)+j(53/5)
Z1/Z2 + (Z2*Z4)/Z3=
=(4+j4)/(3-j2) + ((3-j2)*(3+j5))/(2-j1)=
=((4+j4)*(3+j2))/((3-j2)*(3+j2)) + ((9+j15-j6+10)*(2+j))/((2+j)*(2-j))=
=(12+8j+12j-8)/(9+4) + (19+j9)*(2+j))/(4+1)=
=(4+20j)/13 + (38+19j+18j-9)/5=
=(4/13)+(20/13)j + (29/5) +(37/5)j=
=(397/65) + (581/65)j≈
≈0,31+1,54j+5,8+7,4j≈6,11+8,94 j