Odpowiedź :
Odpowiedź:
log₂64 = log₂2⁶ = 6×log₂2 = 6 × 1 = 6
log₂512= log₂2⁹ = 9×log₂2 = 9 × 1 = 9
log₂0,25 = log₂1/4 = log₂(2)⁻² = (-2)×log₂2 = (-2)× 1 = -2
log₂ 1/1024 = log₂1/2¹⁰ =log₂(2)⁻¹⁰ = (-10)×log₂2 = (-10)× 1 = -10
Szczegółowe wyjaśnienie:
Z definicji logarytmu
[tex]log_{a}b = c \ \ to \ \ a^{b} = c[/tex]
[tex]a)\\log_{2}64 = x\\\\2^{x} = 64\\\\2^{x} = 2^{6}\\\\x = 6\\\\log_{2}64 = 6[/tex]
[tex]b)\\log_{2}512 = x\\\\2^{x} = 512\\\\2^{x} = 2^{9}\\\\x = 9\\\\log_{2}512 = 9[/tex]
[tex]c)\\log_{2}0,25 = x\\\\2^{x} = 0,25\\\\2^{x} = \frac{25}{100}\\\\2^{x} = \frac{1}{4}\\\\2^{x} = (\frac{1}{2})^{2}\\\\2^{x} = 2^{-2}\\\\x = -2\\\\log_{2}0,25 = -2[/tex]
[tex]c)\\log_{2}\frac{1}{1024} = x\\\\2^{x} = \frac{1}{1024}\\\\2^{x} = (\frac{1}{2})^{10}\\\\2^{x} = 2^{-10}\\\\x = -10\\\\log_{2}1024 = -10[/tex]