Odpowiedź :
w(x)=3x^5+2x^4-6x^3-4x^2-9x-6=x^4(3x+2)-2x^2(3x+2)-3(3x+2)=(3x+2)(x^4-2x^2-3)=(2x+3)(x+√3)(x-√3)(x^2+1)
x^4-2x^2-3=(x^4-2x^2+1)-4=(x^2-1)^2-2^2=[(x^2-1)-2][(x^2-1)+2]=(x^2-1-2}(x^2-1+2)=(x^2-3)(x^2+1)=(x+√3)(x-√3)(x^2+1)
w(x)=3x^5+2x^4-6x^3-4x^2-9x-6=x^4(3x+2)-2x^2(3x+2)-3(3x+2)=(3x+2)(x^4-2x^2-3)=(2x+3)(x+√3)(x-√3)(x^2+1)
x^4-2x^2-3=(x^4-2x^2+1)-4=(x^2-1)^2-2^2=[(x^2-1)-2][(x^2-1)+2]=(x^2-1-2}(x^2-1+2)=(x^2-3)(x^2+1)=(x+√3)(x-√3)(x^2+1)