Rozwiąż równania

a) x/3 + 1 = 5/6 +x/2
b) 2x-3 / 4= 1/2 +x
c) x+2 / 9 + x-1 / 3
d) 2x+3 / 5 = 2 - x / 3 + 3
e) 3x - 5 /2 + 5x - 1 / 10 = 0
f) x/2 -1 = 2/5 ( 4 - x ) - 4
g) 2x - 1 / 5 - x-2 /2 - 0,7x
h) 2x -3x + 5 / 4 = -1/4x - 1

help plz


Odpowiedź :

Odpowiedź:

Szczegółowe wyjaśnienie:

a) x/3 + 1 = 5/6 + x/2   /*6

2x + 6 = 5 + 3x

2x - 3x = 5 - 6

-x = - 1/:(-1)

x = 1

b) [tex]\frac{2x-3}{4} = \frac{1}{2} +x[/tex] / * 4

2x - 3 = 2 + 4x

2x- 4x = 2 + 3

-2x = 5/:(-2)

x = [tex]-\frac{5}{2}[/tex] = [tex]-2\frac{1}{2}[/tex]

c) [tex]\frac{x + 2}{9} + \frac{x - 1}{3} = 1[/tex] / * 9

x + 2 + 3(x - 1) =9

x + 2 + 3x - 3 = 9

x + 3x = 9 - 2 + 3

4x = 10/:4

x = [tex]\frac{10}{4}[/tex] = [tex]2\frac{2}{4}[/tex] = [tex]2\frac{1}{2}[/tex]

d) [tex]\frac{2x +3}{5} =\frac{2 - x}{3} +3[/tex] / *15

3(2x + 3) = 5(2 -x) + 45

6x + 9 = 10 - 5x + 45

6x + 5x = 10 + 45 - 9

11x = 46/:11

x = [tex]\frac{46}{11}[/tex] = [tex]4\frac{2}{11}[/tex]

e) [tex]\frac{3x - 5}{2} + \frac{5x - 1}{10} = 0[/tex] / *10

5(3x - 5) + 5x - 1 = 0

15x - 25 + 5x - 1 = 0

15x + 5x = 25 + 1

20x = 26/:20

x = [tex]\frac{26}{20}[/tex] = [tex]1\frac{6}{20}[/tex] = [tex]1\frac{3}{10}[/tex]

f) [tex]\frac{x}{2} -1 = \frac{2}{5}(4-x) - 4[/tex]

[tex]\frac{x}{2} -1 = \frac{8}{5} - \frac{2}{5}x - 4[/tex] / * 10

5x - 10 = 16 - 4x - 40

5x + 4x = 16 - 40 + 10

9x = -14/:9

x = [tex]-\frac{14}9}[/tex] = [tex]-1\frac{5}{9}[/tex]

h) [tex]\frac{2x - 3x + 5}{4} =\frac{-1}{4x - 1}[/tex]

[tex]\frac{- x + 5}{4} =\frac{-1}{4x - 1}[/tex]

(-x + 5)(4x - 1) = - 4

-4x² + x + 20x - 5 = - 4

-4x² + 21x - 1 = 0

Δ = 21² - 4 * (-4) * (-1) = 441 - 16 = 425

√Δ = [tex]\sqrt{425}[/tex] = 5[tex]\sqrt{17[/tex]

x₁ = [tex]\frac{-21 - 5\sqrt{17} }{2 * (-4)}[/tex] = [tex]\frac{-21 - 5\sqrt{17} }{-8}[/tex] = [tex]\frac{21 + 5\sqrt{17} }{8}[/tex]

x₂ =[tex]\frac{-21 +5\sqrt{17} }{2 * (-4)}[/tex] = [tex]\frac{-21 + 5\sqrt{17} }{-8}[/tex] = [tex]\frac{21 -5\sqrt{17} }{8}[/tex]

W podpunktach c i g zapomniałeś dodać znak "=" więc ich nie rozwiążę bo nie wiem co jest równe czemu.