Zad. 1
[tex]f(x) = \frac{x^2- x}{x^2+1} \ to \ 2 \cdot f(-1) + f(2) = 2 \cdot \frac{(-1)^2-(-1)}{(-1)^2+1}+ \frac{2^2- 2}{2^2+1}=2 \cdot \frac{1+1}{1+1}+ \frac{4- 2}{4+1}=\\ = 2 \cdot \frac{2}{2}+ \frac{2}{5}=2 \cdot 1+ \frac{2}{5}=2+ \frac{2}{5}=2\frac{2}{5}[/tex]
Zad. 2
[tex]f(x) = \frac{(x-1)^2}{x} \ to \ f(-3) = \frac{(-3-1)^2}{-3}= \frac{(-4)^2}{-3}= \frac{16}{-3}= -\frac{16}{3}=-5\frac{1}{3}[/tex]