Trójkąt prostokątny o kątach ostrych 30°i 60° ma boki długości : x , x√3, 2x.
Oznaczmy y - długość boku leżącego naprzeciwko kąta 15°.
Trójkąt o bokach : (y+x), x√3 oraz 9√2 jest prostokątny i równoramienny.
Czyli : y+x=x√3 .
Korzystamy z tw. Pitagorasa :
(x√3)²+(x√3)²=(9√2)²
3x²+3x²=81·2
6x²=2·81|:6
x²=27
x=√27
x=3√3
Odp. B