Dane są zbiory
A = {XER: = < √13 - 4√3 - √21 - 12√3}
B = {x € R: |2x + 12| >= 2}
Wyznacz zbiór B\A.​


Dane Są ZbioryA XER Lt 13 43 21 123B X R 2x 12 Gt 2Wyznacz Zbiór BA class=

Odpowiedź :

Zad. 9

[tex]A = \{x \in R: x \leq \sqrt{13-4\sqrt{3}} - \sqrt{21-12\sqrt{3}} \} \\\\ x \leq \sqrt{13-4\sqrt{3}} - \sqrt{21-12\sqrt{3}} = \sqrt{(2\sqrt{3}-1)^2} - \sqrt{(2\sqrt{3}-3)^2} = \\ = 2\sqrt{3}-1 - (2\sqrt{3}-3)=2\sqrt{3}-1 -2\sqrt{3}+3 = 2 \\ x \in (- \infty, \ 2 \rangle \\\\ Zatem: \\ A = \{x \in R: x \in (- \infty, \ 2 \rangle \}[/tex]

-----

[tex]B = \{x \in R: |2x + 12| \geq 2 \} \\\\ |2x + 12| \geq 2 \\ 2x + 12 \geq 2 \ \vee \ 2x + 12 \leq -2 \\ 2x + 12 \geq 2 \ \vee \ 2x + 12 \leq -2 \\ 2x \geq 2-12 \ \vee \ 2x \leq -2-12 \\ 2x \geq -10 \ \ \ |:2 \ \vee \ 2x \leq -14 \\ x \geq -5 \ \vee \ x \leq - 7 \\ x \in (- \infty, \ - 7 \rangle \cup \langle -5, \ + \infty) \\\\ Zatem: \\ B = \{x \in R: x \in (- \infty, \ - 7 \rangle \cup \langle -5, \ + \infty) \}[/tex]

-----

[tex]B \setminus A =((- \infty, \ - 7 \rangle \cup \langle -5, \ + \infty)) \setminus (- \infty, \ 2 \rangle = (2, \ + \infty) \\\\ Zatem: \\ B \setminus A = \{x \in R: x \in (2, \ + \infty) \}[/tex]

Zobacz obrazek Roma