Odpowiedź :
1.
[tex]dane:\\p = 300 \ Pa = 300 \ \frac{N}{m^{2}}\\S = 5 \ cm\times 6 \ cm = 30 \ cm^{2} = 0,003 \ m^{2}\\szukane:\\F = ?\\\\Rozwiazanie\\\\p = \frac{F}{S} \ \ |\cdot S\\\\F = p\cdot S\\\\F = 300\frac{N}{m^{2}}\cdot0,003 \ m^{2} = 0,9 \ N[/tex]
2.
[tex]dane:\\F_{w} = 5 \ N\\d = 1000\frac{kg}{m^{3}}\\g = 10\frac{N}{kg}\\szukane:\\V = ?\\\\Rozwiazanie\\\\F_{w} = d\cdot g\cdot V \ \ /:(d\cdot g)\\\\V = \frac{F_{w}}{d\cdot g}\\\\V = \frac{5 \ N}{1000\frac{kg}{m^{3}}\cdot10\frac{N}{kg}} = 0,0005 \ m^{3} = 0,5 \ dm^{3}[/tex]
3.
[tex]dane:\\S_1 = 2 \ cm^{2}\\S_2 = 20 \ cm^{2}\\F_2 = 100 \ N\\szukane:\\F_1 = ?\\\\Rozwiazanie\\\\\frac{F_1}{S_1} = \frac{F_2}{S_2}\\\\F_1\cdot S_2 = F_2\cdot S_1 \ \ /:S_2\\\\F_1 = F_2\cdot\frac{s_1}{S_2}\\\\F_1 = 100 \ N\cdot\frac{2 \ cm^{2}}{20 \ cm^{2}} = 10 \ N[/tex]
4.
[tex]dane:\\F_{g} = 5 \ N\\F = 1,9 \ N\\szukane:\\F_{w}\\\\Rozwiazanie\\\\F_{w} = F_{g} - F\\\\F_{w} = 5 \ N - 1,9 \ N\\\\F_{w} = 3,1 \ N[/tex]