Ktoś byłby w stanie to wyliczyć?
[tex] \frac{1}{2\pi} \times \sqrt{ \frac{1}{0.217 \times 0.000452} - \frac{17^{2} }{ {0.217}^{2} } } [/tex]
Powinno wyjść coś w granicach 300-400​


Odpowiedź :

[tex]\dfrac1{2\pi}\cdot\sqrt{\dfrac1{0,217\cdot0,000452}-\dfrac{17^2}{0,217^2}}=\\\\\\=\dfrac1{2\pi}\cdot\sqrt{\dfrac1{2,17\cdot10^{-1}\cdot4,52\cdot10^{-4}}-\dfrac{17^2}{2,17^2\cdot 10^{-2}}}=\\\\\\ = \dfrac1{2\pi}\cdot\sqrt{\dfrac{10^5}{2,17\cdot4,52}-\dfrac{17^2\cdot 10^2}{2,17^2}}= \dfrac1{2\pi}\cdot\sqrt{\dfrac{2,17\cdot10^5-17^2\cdot 10^2\cdot4,52}{2,17^2\cdot4,52}} =[/tex]

[tex]= \dfrac1{2\pi}\cdot\sqrt{\dfrac{10^2\cdot(2,17\cdot10^3-17^2\cdot4,52)}{2,17^2\cdot4,52}} = \dfrac{10}{2\pi}\cdot\sqrt{\dfrac{2170-289\cdot4,52}{2,17^2\cdot4,52}} =\\\\\\ = \dfrac5{\pi}\cdot\sqrt{\dfrac{2170-289\cdot4,52}{4,7089\cdot4,52}} = \dfrac5{\pi}\cdot\sqrt{\dfrac{2170-1306,28}{21,284228}} =\\\\\\= \dfrac5{\pi}\cdot\sqrt{\dfrac{863,72}{21,284228}} \approx\dfrac5{3,14}\cdot\sqrt{40,58}\approx1,59\cdot6,37\approx10,13[/tex]