Z. |x|≠|y|
T. (x-y)(x³+y³)/(x+y)(x³-y³) > 1/3
Dowód :
Jeśli |x|≠|y| ,to x≠y ∧ x≠-y.
(x-y)(x³+y³)/(x+y)(x³-y³) > 1/3
(x-y)(x+y)(x²-xy+y²)/(x+y)(x-y)(x²+xy+y²) > /13
(x²-xy+y²)/(x²+xy+y²) > 1/3 |·3(x²+xy+y²)
3(x²-xy+y²) > x²+xy+y²
3x²-3xy+3y²-x²-xy-y² > 0
2x²-4xy+2y² > 0 |:2
x²-2xy+y² > 0
(x-y)² > 0 ( nierówność jest ostra , bo z założenia ; x≠y )
cnd.