[tex]a)\\\\\frac{x+2}{x-2}=0\\\\x-2\neq 0\\x\neq 2\\D=R\setminus \left \{ 2 \right \}\\\\x+2=0\\\\x=-2[/tex]
[tex]b)\\\\\frac{3}{x+1}=0\\\\x+1\neq 0\\x\neq-1\\D=R\setminus \left \{ -1 \right \}\\\\ 3=0\\L\neq P\\\\ rownanie,\ sprzeczne\ brak\ rozwiazania[/tex]
[tex]c)\\\\\frac{x+1}{x+2}= \frac{x+2}{x-3}\\\\x+2\neq 0\ \ \wedge \ \ x-3\neq 0\\x\neq-2\ \ \wedge \ \ x\neq 3\\D=R\setminus \left \{ -2,3 \right \}\\\\ (x+1)(x-3)=(x+2)^2\\\\x^2-3x+x-3=x^2+4x+4 \\\\x^2-3x+x-x^2-4x=4+3\\\\-6x=7\ \ :(-6)\\\\x=-\frac{7}{6}[/tex]
[tex]d)\\\\\frac{x+3}{x+5}= \frac{x-1}{x-3}\\\\x+5\neq 0\ \ \wedge \ \ x-3\neq 0\\x\neq-5\ \ \wedge \ \ x\neq 3\\D=R\setminus \left \{ -5,3 \right \}[/tex]
[tex](x+3)(x-3)=(x+5)(x-1) \\\\x^2- 9=x^2-x+5x-5\\\\x^2-x^2+x-5x=-5+9\\\\-4x=4\ \ |:(-4)\\\\x=-1[/tex]