Ktoś wie jak to zrobić

Zad1
Wyznacz środek i długość odcinka o końcach A=(1,2)i B=(3,4)
Zad2
Oblicz ile jest liczb naturalnych czterocyfrowych w których cyfra dziesiątek jest o dwa mniejsza od cyfry setek ​


Odpowiedź :

Odpowiedź:

1]

I AB I= √[(x1-x2)²+(y1-y2)²]=√[( 3-1)²+(4-2)²]=√( 4+ 4)=√8=2√2

S=(x,y)= srodek AB

x=( x1+x2)/2= ( 1+3)/2= 2            y=(y1+y2)/2=( 2+4)/2=3

S=( 2,3)

2]

pierwsza cyfrę wybierzesz na 9 sposobów [ bez 0], cyfre jednosci na 10, cyfrę setek wybiersz sposród cyfr { 2,3,4,5,6,7,8,9}, czyli na 8 sposobów

liczb jest : 9*10*8=720

Szczegółowe wyjaśnienie: