Odpowiedź :
Prosze o dokładne rozwiazania z tłumaczeniem.
Doprowadz do najprostszej postaci, podaj założenia
a) (n - 1)! / (n-3)! =(n-3)!(n-2)(n-1) / (n-3)!=(n-2)(n-1)
b) (2n)! / (2n-3)!= (2n-3)!(2n-2)(2n-1)2n / (2n-3)!=(2n-2)(2n-1)2n
c) (2n-1)!*(n-3)! / (2n-5)!*n!=
(2n-5)!(2n-4)(2n-3)(2n-2)(2n-1)*(n-3)! / (2n-5)!*(n-3)!(n-2)(n-1)n=
(2n-4)(2n-3)(2n-2)(2n-1) / (n-2)(n-1)n=2(n-2)(2n-3)2(n-1)(2n-1) / (n-2)(n-1)n=
2(2n-3)2(2n-1) / n=4(2n-3)(2n-1) / n
g) (n-k)!*(n-k+1)! / (n-k+2)! * (n-k-1)!=
(n-k-1)!(n-k)*(n-k+1)!/ (n-k+1)!(n-k+2) * (n-k-1)!=
(n-k)/ (n-k+2)
"/" to kreska ułamkowa
Doprowadz do najprostszej postaci, podaj założenia
a) (n - 1)! / (n-3)! =(n-3)!(n-2)(n-1) / (n-3)!=(n-2)(n-1)
b) (2n)! / (2n-3)!= (2n-3)!(2n-2)(2n-1)2n / (2n-3)!=(2n-2)(2n-1)2n
c) (2n-1)!*(n-3)! / (2n-5)!*n!=
(2n-5)!(2n-4)(2n-3)(2n-2)(2n-1)*(n-3)! / (2n-5)!*(n-3)!(n-2)(n-1)n=
(2n-4)(2n-3)(2n-2)(2n-1) / (n-2)(n-1)n=2(n-2)(2n-3)2(n-1)(2n-1) / (n-2)(n-1)n=
2(2n-3)2(2n-1) / n=4(2n-3)(2n-1) / n
g) (n-k)!*(n-k+1)! / (n-k+2)! * (n-k-1)!=
(n-k-1)!(n-k)*(n-k+1)!/ (n-k+1)!(n-k+2) * (n-k-1)!=
(n-k)/ (n-k+2)
"/" to kreska ułamkowa
Na początek przypomnijmy co oznacza n!. n! to silnia. A liczy się ją tak:
n! = 1 * 2 * 3 * 4 * ... * (n - 1) * n
a) (n - 1)! / (n-3)! = [1*2*3*...(n-3)(n-2)(n-1)]/[1*2*3*...*(n-3)] =
= (n-2)(n-1) = n²-3n+2
(licznik i mianownik upraszczamy - dzielimy przez 1*2*3*...*(n-3) )
n≥3
b) (2n)! / (2n-3)! = [1*2*3*...*(2n-3)(2n-2)(2n-1)*2n]/[[1*2*3*...*(2n-3)] = (2n-2)(2n-1)*2n = (4n²-6n+2)*2n = 8n³-6n²+4n
n>1
c) (2n-1)!*(n-3)! / (2n-5)!*n! = {[1*2*3*...*(2n-5)(2n-4)(2n-3)(2n-2)(2n-1)]*[1*2*3*...*(n-3)]}/{[1*2*3*...*(2n-5)]*[1*2*3*...*(n-3)(n-2)(n-1)*n]} = [(2n-4)(2n-3)(2n-2)(2n-1)]/[(n-2)(n-1)*n] = [2*(2n-3)*2*(2n-1)]/n = [4(2n-3)(2n-1)]/n = [4(4n²-8n+3)]/n = 16n-32+(12/n)
n≥3
g) (n-k)!*(n-k+1)! / (n-k+2)! * (n-k-1)! =
={[1*2*3*...*(n-k-1)(n-k)]*[1*2*3*...*(n-k+1)]}/{[1*2*3*...*(n-k+1)(n-k+2)]*[1*2*3*...*(n-k-1)]} =
= (n-k)/(n-k+2)
n≥k+1
n! = 1 * 2 * 3 * 4 * ... * (n - 1) * n
a) (n - 1)! / (n-3)! = [1*2*3*...(n-3)(n-2)(n-1)]/[1*2*3*...*(n-3)] =
= (n-2)(n-1) = n²-3n+2
(licznik i mianownik upraszczamy - dzielimy przez 1*2*3*...*(n-3) )
n≥3
b) (2n)! / (2n-3)! = [1*2*3*...*(2n-3)(2n-2)(2n-1)*2n]/[[1*2*3*...*(2n-3)] = (2n-2)(2n-1)*2n = (4n²-6n+2)*2n = 8n³-6n²+4n
n>1
c) (2n-1)!*(n-3)! / (2n-5)!*n! = {[1*2*3*...*(2n-5)(2n-4)(2n-3)(2n-2)(2n-1)]*[1*2*3*...*(n-3)]}/{[1*2*3*...*(2n-5)]*[1*2*3*...*(n-3)(n-2)(n-1)*n]} = [(2n-4)(2n-3)(2n-2)(2n-1)]/[(n-2)(n-1)*n] = [2*(2n-3)*2*(2n-1)]/n = [4(2n-3)(2n-1)]/n = [4(4n²-8n+3)]/n = 16n-32+(12/n)
n≥3
g) (n-k)!*(n-k+1)! / (n-k+2)! * (n-k-1)! =
={[1*2*3*...*(n-k-1)(n-k)]*[1*2*3*...*(n-k+1)]}/{[1*2*3*...*(n-k+1)(n-k+2)]*[1*2*3*...*(n-k-1)]} =
= (n-k)/(n-k+2)
n≥k+1
Podam Ci na liczbach w jaki sposób liczy się silnie (!)
np.
4!=3!*4=(2!*3)*4=((1!*2)*3)*4=1*2*3*4=24
8!/6! =6!*7*8/6!= 7*8=56
a) (n - 1)! / (n-3)! =(n-3)! (n-2)*(n-1) / (n-3)! = (n-2)*(n-1)
b) (2n)! / (2n-3)!= (2n-3)! (2n-2)*(2n-1)*2n / (2n-3)! =
=(2n-2)*(2n-1)*2n
c) (2n-1)!*(n-3)! / (2n-5)!*n!=
=(2n-5)! (2n-4)*(2n-3)*(2n-2)*(2n-1)*(n-3)! /
/(2n-5)!*(n-3)! (n-2)*(n-1)*n=
=(2n-4)*(2n-3)*(2n-2)*(2n-1) / (n-2)*(n-1)*n=
=2(n-2)*(2n-3)*2(n-1)*(2n-1) / (n-2)*(n-1)*n=
=2(2n-3)*2(2n-1) / n =
=4(2n-3)*(2n-1) / n
g) (n-k)!*(n-k +1)! / (n-k+2)! * (n-k-1)!=
=(n-k -1)! (n-k)*(n-k +1)! / (n-k +1)! (n-k +2) * (n-k -1)!=
=(n-k) / (n-k +2)
np.
4!=3!*4=(2!*3)*4=((1!*2)*3)*4=1*2*3*4=24
8!/6! =6!*7*8/6!= 7*8=56
a) (n - 1)! / (n-3)! =(n-3)! (n-2)*(n-1) / (n-3)! = (n-2)*(n-1)
b) (2n)! / (2n-3)!= (2n-3)! (2n-2)*(2n-1)*2n / (2n-3)! =
=(2n-2)*(2n-1)*2n
c) (2n-1)!*(n-3)! / (2n-5)!*n!=
=(2n-5)! (2n-4)*(2n-3)*(2n-2)*(2n-1)*(n-3)! /
/(2n-5)!*(n-3)! (n-2)*(n-1)*n=
=(2n-4)*(2n-3)*(2n-2)*(2n-1) / (n-2)*(n-1)*n=
=2(n-2)*(2n-3)*2(n-1)*(2n-1) / (n-2)*(n-1)*n=
=2(2n-3)*2(2n-1) / n =
=4(2n-3)*(2n-1) / n
g) (n-k)!*(n-k +1)! / (n-k+2)! * (n-k-1)!=
=(n-k -1)! (n-k)*(n-k +1)! / (n-k +1)! (n-k +2) * (n-k -1)!=
=(n-k) / (n-k +2)